
SuperCollider in Athens [pre00]

Yorgos Diapoulis [ydiapoulis@gmail.com]

SuperCollider 1 is an environment and programming language for real time audio syn-
thesis and algorithmic composition. It provides an interpreted object-oriented language
which functions as a network client to a state of the art, realtime sound synthesis server.

SuperCollider was written by James McCartney over a period of many years, and is
now an open source (GPL) project maintained and developed by various people. It is
used by musicians, scientists, and artists working with sound.

1 Hello SC !

The SuperCollider application makes use of client/server architecture which separates
two functions, respectively one providing and the other requesting services. The client
(sc-lang) and the server (sc-synth) communicate through a network.

Figure 1: A screenshot from sc help file "Client vs Server"

1. http://supercollider.sourceforge.net/

1

http://supercollider.sourceforge.net/

2 Hello sc-community

Organize your environment in a manner to design your own instrument. SuperCollider
users usually develop their own working environments for specific or general purposes.

Figure 2: A screenshot by Dan Stowell.

You must be a social being, as long as you are a human. Try to follow sc-users mailing
list, and find out more here: http://supercollider.sourceforge.net/community/

3 Hello World !

Type the line below and execute, from Menu > Lang > Evaluate Selection. Keyboard
shortcut fn+return or ctrl-c or shift+return (mac), ctrl+E (gedit), C-c C-c (emacs)

"Hello World !".postln;
// this is a comment
/* ..and this is also a comment,
a multiple lines comment */

2

http://supercollider.sourceforge.net/community/

Now, it is time to listen to sc-synth. Your are about to listen in your left channel a
sine oscillator at 440 Hz. Hello sound!

// the following command boots your server (sc-synth)
s.boot; // ’s’ is preassigned to your localhost server (s=Server.local;)
x = { SinOsc.ar(440, 0, 0.1) }.play;
x.free;

Find out how to use sc-help:

Help.gui; // or for keyboard shortcut press cmd+d (mac), F1 (win)

SuperCollider has one of the biggest and most active communities on computer music.
You can find a lot of academic bibliography for a wide range of topics. Many support
for the user is also provided by the Quarks library. A bunch of of code can be found by
typing:

Quarks.gui;

Figure 3: A screenshot by Andrea Valle, from Geography Quark.

3

4 Musical and research fields

SC is a programming environment for algorithmic composition. It is running on the
meta-machine, well-known as personal computer.

Ron Kuivila back in 80s proclaimed (Collins 2011):

“we have to make computer music that sounds like electronic music”

From 80s to today, a lot of progress have already done, although many people are
convinced that there is a difference between software and hardware sound engines, and
claim that this is audible to their ears.

On the other hand it is a common truth that the computers literally boost the capa-
bilities for composition, interaction and performance. Using high-level languages such us
sc3, it is possible to compose very long songs, or even infinite length songs, to train your
musical robot using AI techniques, to do spatial sound applications and research, sound
installations and more.

4.1 Live Coding

Another hot-topic these days is that of live coding (Collins et al. 2003). These high-
level interpreted environments for sound programming like sc3, impromptu and others,
reveals another perspective on musical interaction. The musician slowly turns himself to
a “codician”. Code is exposed in front of him as an instrument. Live coding moto is “show
us your screens” 2 and there is a temporary organization for its promotion 3.

Figure 4: Toplap logo

4.2 sc140

Another interesting thing that proves the simplicity of SuperCollider is that the sc-users
are used to send to each other code snippets through twitter. This constrain demands
that you can type, up to 140 characters. The well known “sc140” 4 was the product

2. https://vimeo.com/20241649
3. http://toplap.org
4. http://thewire.co.uk/articles/3177/

4

https://vimeo.com/20241649
http://toplap.org
http://thewire.co.uk/articles/3177/

of this interaction. Check some code below and listen to the full release here: http:
//supercollider.sourceforge.net/sc140/

// 06 Batuhan Bozkurt (refactored by Charles Celeste Hutchins)
f={|t|Pbind(\note,Pseq([-1,1,6,8,9,1,-1,8,6,1,9,8]+5,319),\dur,t)};Ptpar([0,
f.(1/6),12,f.(0.1672)],1).play//#supercollider reich RT @earslap

// 07 Thor Magnusson
play{x=SinOsc;y=LFNoise0;a=y.ar(8);(x.ar(Pulse.ar(1)*24)+x.ar(90+(a*90))
+MoogFF.ar(Saw.ar(y.ar(4,333,666)),a*XLine.ar(1,39,99,99,0,2)))!2/3}

5 Time for coding

This section includes some interactive code to warm up your engines. Try to alter the
examples below with care.

FreqScope.server = s; // adjust freqScope to listen to the server
FreqScope.new; // open a frequency analyser

// the line below gives you interaction with the mouse on x-axis
{LFSaw.ar(MouseX.kr(10, 1000, 1))}.play;

// keyboard shortcut to _stop_ sound!
// cmd + . (mac)
// esc (gedit)
// C-c, C-s (emacs)

// open your localhost levels
s.meter;

// check that your mic is working properly, else adjust it and s.reboot;
{DelayN.ar(SoundIn.ar, 1, 1)}.play // mic input with 1sec delay

// open server volume GUI slider
s.volume.gui;

// run this with care !! use your mic
{FreeVerb.ar(DelayN.ar(SoundIn.ar,1,1),0.5,0.6,1)}.play;

(
{

var pitch = Pitch.kr(SoundIn.ar).poll;
FreeVerb.ar(DelayN.ar(SinOsc.ar(pitch, 0, 0.1), 1, 1), 0.5, 0.5)

}.play(outbus:1);
)

5

http://supercollider.sourceforge.net/sc140/
http://supercollider.sourceforge.net/sc140/

Many thanks to Fredrik Olofsson for allow us to use and alternate the followings two
code blocks.

(
f = {

var amp = 0.3;
var src = Amplitude.ar(DelayN.ar(SoundIn.ar, 1, 1), 0.01, 0.5);

SinOsc.ar(Latch.ar(src, Impulse.ar(4)).poll.linexp(0, 1, 1200, 5000),
0, src.lag(0.1)*amp)!2
}.play;

)
f.free;

(
s.waitForBoot{

Spec.add(\freq, #[20,2000, \lin]);
Spec.add(\amp, #[0.0, 1.0, \lin]);

Ndef(\sineGUI).play;
Ndef(\sineGUI, { |freq=400, amp=0.1|

Splay.ar(SinOsc.ar({|i| Stepper.kr(Amplitude.kr(SoundIn.ar).poll>0.5)
*freq/(i+1)}.dup(8), 0, amp))
});

Ndef(\sineGUI).edit;
s.meter;

};
)

6 Build your own working environment

You can find your startup file in the following path. When you open sc or recompile your
library, the included code in the startup.scd file will be executed.

// check out the path of startup file
Platform.userConfigDir +/+ "startup.scd"

// open it in sc
(Platform.userConfigDir +/+ "startup.scd").asString.openDocument;

Try to put in your startup.scd file, the command Server.local.boot; in order to
boot your server each time you recompile the class library.

6

7 Related help files

Highlight “ClassName” and press cmd+J , or Menu > Lang > Open Class Def. For meth-
ods, highlight “methodName” and press cmd+Y, or Menu > Lang > Implementations

Sclang Startup File
> Classes

Client vs Server
ServerOptions
Platform
UGen

SinOsc
LFSaw
MouseX
SoundIn
Pitch
FreeVerb
DelayN
Amplitude
Impulse
Latch
Stepper
Splay
XLine

FreqScope
String
Document

> Methods
.postln
.boot
.play
.meter
.lag
.linexp
.dup

References:

Collins, N. 2011. Semiconducting – Making Music After the Transistor. In “Technology
and Aesthetics” Symposium NOTAM, Oslo, May 2011

Collins, N., McLean, A., Rohrhuber, J., and A. Ward. 2003. Live coding in laptop
performance. Organised Sound, 8(03): 321-330.

Wilson, S., Cottle, D. and N. Collins, eds. 2011. The SuperCollider Book. MIT Press.

cc© Attribution-Noncommercial-Share Alike. Some Rights Reserved

7

	Hello SC !
	Hello sc-community
	Hello World !
	Musical and research fields
	Live Coding
	sc140

	Time for coding
	Build your own working environment
	Related help files

