
  

VHDL/Verilog intro & Tooling

prepared for Programmable Logic Lessons / 1.2 by ~skmp

Kindly hosted by hackerspace.gr

http://hackerspace.gr/wiki/Programable_Logic_Lessons
http://hackerspace.gr/wiki/PLD_Workshop_04_06_2013
http://hackerspace.gr/wiki/User:Skmp
http://hackerspace.gr/


  

HDL

● Hardware Description Language
– Initially used to describe and simulate

– As transistors became smaller (thus cheaper) synthesis became more popular
● Some companies still do a lot of manual work (eg, Intel)

● History
– ISPL/ISPS – first attempts (DEC, 70s)

– KARL/ABL (University of Kaiserslautern, EU)
● Became popular for PLDs
● Extended to VLSI in 80s

– Verilog
● Introduced in 85, by Gateway Design Automation
● First “modern”, designed for synthesis
● Similar with C syntax
● Popular with designs in the USA

– VHDL
● Initiated by DoD in 87
● Syntax inspired from Ada
● Popular in EU

http://en.wikipedia.org/wiki/Hardware_description_language


  

Design “Levels”

● VHDL/Verilog
– High level .. well kind of

● RTL
– Low level “assembly” for synchronous digital logic

– Describes data movement between abstract registers

● Netlist
– Connection level

– Describes connections between parts (transistors, etc)

– Lowest level

http://en.wikipedia.org/wiki/Register_transfer_language
http://en.wikipedia.org/wiki/Netlist


  

HDL vs Typical programming

● Hardware works in parallel
– You have concurrent and sequential logic

– There are also time based constructs
● Do x after y time
● Most of these aren't synthesizable

● You can't debug, not in the same way anyway
– You can simulate your design and stare at the waveforms

● Feels pretty primitive if you're used to rich debugging tools



  

VHDL Example
(I'm sleepy, show me some code nao)

-- (this is a VHDL comment)
 
-- import std_logic from the IEEE library
library IEEE;
use IEEE.std_logic_1164.all;
 
-- this is the entity
entity ANDGATE is
  port ( 
    I1 : in std_logic;
    I2 : in std_logic;
    O  : out std_logic);
end entity ANDGATE;
 
-- this is the architecture
architecture RTL of ANDGATE is
begin
  O <= I1 and I2;
end architecture RTL;

– More examples at wikipedia

http://en.wikipedia.org/wiki/VHDL


  

Verilog Example
(I'm sleepy, show me some code nao)

module AND2gate(A, B, F);

   input A;
   input B;
   output F;

   assign F = A & B;

Endmodule

//http://en.wikipedia.org/wiki/Verilog for more



  

Not all code is synthesizable

● Synthesizable means that it can be actually 
implemented in fpga/vlsi
– Some parts of the language are just for 

documentation/verification/simulation

– A pretty complete list here

● We will only care for the synthesizable parts 

http://www.cs.unc.edu/~lastra/Courses/Verilog/talk/html/SynthSubset.html


  

Some definitions
● Top level design

– The main “entity” of the design. During the synthesis, all required 
submodules will be synthesized.

● ANYTHING not directly referenced will be REMOVED (optimized-out)

● Schematic
– A diagram with connections

● Symbol
– The image shown for a part on the schematic

● Ucf
– User Constrains file. Used to map pin names to pin i/o on xilinx ISE



  

Basic Verilog structure
● Wire

– A connection (like a wire)

● Register
– Buffered output

● Module
– A block of logic with inputs and outputs

● Always blocks
– Logic that gets updated when the input changes

– Two assignment operators, = (blocking) and <= (non-blocking, updates on next cycle)

● Assign
– Combinatorial logic

● Basic operators
– & | ^ ~ , && ||, < > != ==, << >> <<< >>>, much more

● Wikipedia has a pretty good article :)

http://en.wikipedia.org/wiki/Verilog


  

Let's get Xilinx ISE installed

● ftp.hsgr.awmn/upload

ftp://ftp.hsgr.awmn/upload


  

Xilinx ISE

● Make a basic project
● Add a source file
● Implement AND
● Use simulator
● Try to program it to papilio

http://papilio.cc/index.php?n=Papilio.Download


  

Thanks !

Next week we'll get into more into more 
complicated synchronous logic!

Feel free to drop by #hsgr @ freenode

... or the hsgr mailing list

... and use the wiki !
(or, send direct feedback – skmp@emudev.org)

http://lists.hackerspace.gr/listinfo/discuss
http://hackerspace.gr/wiki/Programable_Logic_Lessons

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

